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Ricei Tensor with Six CoHineat!ons 
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In classifying Ricci tensors in terms of their coilineations, an interesting case 
possessing six collineations arises. These collineations are worked out and 
discussed. 

The classification of spacetime metrics according to their symmetry is 
important (Petrov, 1969; Ziad, 1990; Bokhari and Qadir, 1987, 1990; Ziad 
and Qadir, n.d.). The classification of other tensors, e.g., the Riemann tensor, 
the Ricci tensor, or the Ricci scalar, according to their symmetry may also 
be important (Kramer et al., 1980). The pioneering work in this direction 
was done by Katzin et al. (1969). More rigorous work was done by Davis 
et al. (1976). In this paper we readdress the same problem in a different 
perspective. What we intend to do (at some later stage, in the light of 
the present work) is to classify the general Ricci tensor in terms of its 
collineations following the line used by Petrov to classify metric tensors. The 
methods developed by us previously to classify static, spherically symmetric 
metrics have been employed to work out collineations of the Ricci tensor. 
It is seen that it gives rise to an interesting case with six collineations. Instead 
of deriving the full classification here, we restrict ourselves to illustrating the 
procedure and then deriving the six-collineation case only. 

We use the spherically symmetric and static metric tensor (Petrov, 1969) 
to construct the component of the Ricci tensor and assume that R00 = A(r ) ,  
Rtt = B(r ) ,  R22 = C(r) ,  and R33 = C(r)  sin 2 O. 
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The Ricci collineation equation (CE(7)), which we designate by (Cab), 
is given by 

(Cab): ~cVeRab + RacVb~C + RbcVa~c =O 

This equation, in a torsion-free space in a coordinate basis, can be further 
simplified to yield 

(Cab): ~CRab, c-[- Rac~C,b'JI- Rbc~C,a=O (1) 
where ,c denotes partial differentiation with respect to the x c coordinate. 

Notice that the (C~) equation can be easily integrated to yield 

~1 =f(t, g, q~)/B ~/2, where B r  (2) 

We use the procedure adopted by us previously (Katzin et al., 1969). There 
are two possibilities in equation (2) for the values off ,  namely (i) f =  0 and 
( i i ) f~0.  We restrict ourselves to the second case. Using equation (2) in the 
CEs (Ci2) and (C22), differentiating them with respect to g and r, respec- 
tively, denoting D(r)= C'/zCB ~/2 and then comparing gives 

f ( t ,  ~9, d?)oa/f- CD'B I/z = 0 (3) 

where a prime denotes differentiation with respect to the radial coordinate. 
Notice that the two terms in the above equation are independent of each 
other. Thus, 

f ( t, O, dp)oo/f = CD'B '/2= a (4) 

where a is a separation constant which may be >0, =0, or <0. Another 
possibility could have been (a) D '=0  and (b) D ' r  In the first case, it is 
easy to see (with a = 0)that  

C=exp(a fB ' /2dr+b)  and f=f~(t, ck)~9+f2(t, dp) 

where a and b are integration constants. Redefining coordinates, b can be 
absorbed into the definition and the above equation becomes 

Again there are two possibilities in this equation regarding b, i.e., (i) b = 0 
and (ii) b ~0. In the first case C= const. Since the second case is not of 
interest at the moment, we will not deal with it here. Now (Coo) yields 

~~ = - (  A' /2ABl /2)f (6) 

As above, there are some possibilities here regarding A, i.e., ( ,)  A'= 0 and 
(t) A ' r  We consider ( ,)  only. Here A = d  (a constant) and one can have 
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(V) d>0 ,  (C)) d=0,  and (1-1) d<0.  We restrict ourselves to (V). To derive 
(2a .V),  (Coo) to (C03) give 

G ~ F(r, O, dp) (7) 

4 .= -dF'  t/B+Fl(r, ~, r (8) 

4 2 = -dFot+ F2(r, ~, ~b) (9) 

4 3= -dFc, t/sin2~ + F3(r, ~9, ~b) (10) 

where F, F1, F2, and F3 are integration functions. Substituting equation 
(12) into (Cjl) yields 

d[F'B ' /B-  2F"lt + [2B(F~)' + B'F,] = 0 

The above equation is satisfied only if the terms in brackets are separately 
zero, i.e., 

B' /2B-F" /F '=O and (FI)'/Ft + B'/2B=O (11) 

The above equation can be easily integrated to yield 

F=K(o a, d?) f B 1/2 dr+ Kt(O, O) (12) 

Ft = L(~9, dp)/B ~/2 

Substituting equation (13) into (C22) yields 

K= K,(dp)O + K12(~) 

Kt = Kxt(~b),9 + K2x(~b) (13) 

F2= F,(r, ~ ) 

Incorporating the above into (C02) yields either d or Kzt equal to zero. Since 
we are dealing with d #  0, the obvious choice is that K2t = 0 in equation (16). 
Similarly, (Ct2) and (Ct3) respectively yield 

/ t~ \ l 

L=Lt(~b) and F3 ILlcjBt/Zdr)/sin2~+L2(~,c]O 

At this stage we substitute all the previously derived results into (C23) to 
obtain 

K22= t~t, Ktt =/~t, KI2= ~2 

LI =a3,  L = c o t  ~9 F4~ + L3(~b) 

Now for consistency, we use (Ct2) and (C33). These equations imply that 
at =0, L3=as, and F4=a4cos ~b+as sin ~b. Relabeling parameters and 
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inserting the above results into the CEs, we obtain 

ao+ a, j.,/2 40= dr 

~ l =  ( a 2 - d a l  t ) / B  1/2 

~2 = (a3 cos ~b + a4 sin ~b) 

4 3 = - c o t  ~a(a3 sin ~b + a4 cos ~b) + a5 

Notice that the Ricci tensor components in this case are Ro0 = d =  1 (5ay), 
R~ l = B(r),  R22 = 1, and R33 = sin 2 ~9. Using these components,  the Ricci scalar 
becomes R =  [E v - ~ x B ( r ) -  2/r2], which is zero if we choose B ( r ) =  (e~/ 
~9 2)(r 2 e-V _ 2). F rom the Einstein field equations with A = 0, the components 
of  the stress energy tensor become 

T O = (e -~ + e-XB) /2  + 1/r  2 

T~l = 1/r  2 -- ( e-ZB + e-V) /2  

T 2= ( e - Z B - e - ~ ) / 2  = T] 

From here it is easily noticed that the spherical symmetry of  the metric 
has not changed this structure of  Rab. In fact, it is the same structure as that 
of  SO(3), which arises as a consequence of  solving the Killing equations for 
the spherically symmetric metric. Also present in the above set of  equations 
in ~o is a0, which corresponds to the time translational invariance due to 
staticity of  the metric. However, there is an extra contribution in the collinea- 
tion structure due to parameters a~ and a2. Thus, it is hoped that if this 
scheme for the classification of  collineations of  the general Ricci tensor is 
considered exhaustively, interesting results can be expected. 
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